CT-AI Fragen Antworten, CT-AI Schulungsunterlagen
2025 Die neuesten ZertFragen CT-AI PDF-Versionen Prüfungsfragen und CT-AI Fragen und Antworten sind kostenlos verfügbar: https://drive.google.com/open?id=1uYYnPNlED9HyEynSs8B7QCMVgbda6QGa
Wenn Sie IT-Angestellter sind, wollen Sie befördert werden? Wollen Sie ein IT-Technikexpert werden? Dann legen Sie doch die ISTQB CT-AI Zertifizierungsprüfung ab! Sie wissen auch, wie wichtig diese Zertifizierung Ihnen ist. Sie sollen sich keine Sorgen darüber machen, die Prüfung zu bestehen. Sie soll auch an Ihrer Fähigkeit zweifeln. Wenn Sie sich an der ISTQB CT-AI Zertifizierungsprüfung beteiligen, wenden Sie sich ZertFragen an. Er ist eine professionelle Schulungswebsite. Mit ihm können alle schwierigen Fragen lösen. Die Schulungsunterlagen zur ISTQB CT-AI Zertifizierungsprüfung von ZertFragen können Ihnen helfen, die ISTQB CT-AI Prüfung einfach zu bestehen. Er hat unzähligen Kandidaten geholfen. Wir garantieren Ihnen 100% Erfolg. Klicken Sie den ZertFragen und Sie können Ihren Traum verwirklichen.
ISTQB CT-AI Prüfungsplan:
Thema
Einzelheiten
Thema 1
Thema 2
Thema 3
Thema 4
Thema 5
Thema 6
Thema 7
Thema 8
Thema 9
Thema 10
Die seit kurzem aktuellsten ISTQB CT-AI Prüfungsunterlagen, 100% Garantie für Ihen Erfolg in der Prüfungen!
Sie können nur die Fragen und Antworten zur ISTQB CT-AI (Certified Tester AI Testing Exam) Zertifizierungsprüfung von ZertFragen als Simulationsprüfung benutzen, dann können Sie einfach die Prüfung bestehen. Mit dem ISTQB CT-AI Zertfikat steht Ihr professionelles Niveau höher als das der anderen. Sie bekommen deshalb große Beförderungschance. Fügen Sie ISTQB CT-AI Fragen Und Antworten von ZertFragen in den Warenkorb hinzu. ZertFragen bietet Ihnen rund um die Uhr Online-Service.
ISTQB Certified Tester AI Testing Exam CT-AI Prüfungsfragen mit Lösungen (Q16-Q21):
16. Frage
An e-commerce developer built an application for automatic classification of online products in order to allow customers to select products faster. The goal is to provide more relevant products to the user based on prior purchases.
Which of the following factors is necessary for a supervised machine learning algorithm to be successful?
Antwort: B
Begründung:
The syllabus explains that supervised learning requires correctly labeled data so the algorithm can learn the relationship between input features and output labels:
"In supervised learning, the algorithm creates the ML model from labeled data during the training phase. The labeled data is used to infer the relationship between the input data and output labels." (Reference: ISTQB CT-AI Syllabus v1.0, Section 3.1.1)
17. Frage
Which ONE of the following options describes a scenario of A/B testing the LEAST?
SELECT ONE OPTION
Antwort: B
Begründung:
A/B testing, also known as split testing, is a method used to compare two versions of a product or system to determine which one performs better. It is widely used in web development, marketing, and machine learning to optimize user experiences and model performance. Here's why option C is the least descriptive of an A/B testing scenario:
* Understanding A/B Testing:
* In A/B testing, two versions (A and B) of a system or feature are tested against each other. The objective is to measure which version performs better based on predefined metrics such as user engagement, conversion rates, or other performance indicators.
* Application in Machine Learning:
* In ML systems, A/B testing might involve comparing two different models, algorithms, or system configurations on the same set of data to observe which yields better results.
* Why Option C is the Least Descriptive:
* Option C describes comparing the performance of an ML system on two different input datasets.
This scenario focuses on the input data variation rather than the comparison of system versions or features, which is the essence of A/B testing. A/B testing typically involves a controlled experiment with two versions being tested under the same conditions, not different datasets.
* Clarifying the Other Options:
* A. A comparison of two different websites for the same company to observe from a user acceptance perspective: This is a classic example of A/B testing where two versions of a website are compared.
* B. A comparison of two different offers in a recommendation system to decide on the more effective offer for the same users: This is another example of A/B testing in a recommendation system.
* D. A comparison of the performance of two different ML implementations on the same input data: This fits the A/B testing model where two implementations are compared under the same conditions.
References:
* ISTQB CT-AI Syllabus, Section 9.4, A/B Testing, explains the methodology and application of A/B testing in various contexts.
* "Understanding A/B Testing" (ISTQB CT-AI Syllabus).
18. Frage
Which of the following is an example of overfitting?
Antwort: B
Begründung:
Overfitting occurs when a machine learning (ML) model learns patterns that are too specific to the training data, leading to a lack of generalization for new, unseen data. This means the model performs exceptionally well on the training data but poorly on validation or test data because it has memorized the noise and minor details rather than learning the underlying patterns.
* Option A:"The model is not able to generalize to accommodate new types of data."
* This is the correct definition of overfitting. When a model cannot generalize beyond its training data, it struggles with new input, which results in overfitting.
* Option B:"The model is too simplistic for the data."
* This describes underfitting rather than overfitting. Underfitting happens when a model is too simple to capture the underlying patterns in the data.
* Option C:"The model is missing relationships between the inputs and outputs."
* This also aligns more with underfitting, where the model fails to capture important relationships in the data.
* Option D:"The model discards data it considers to be noise or outliers."
* While some ML models may ignore outliers, overfitting actually occurs when the model includes noise and outliers in its learning process rather than discarding them.
* Overfitting Definition:"Overfitting occurs when the model fits too closely to a set of data points and fails to properly generalize. It works well on training data but struggles with new data.".
* Testing for Overfitting:"Overfitting may be detected by testing the model with a dataset that is completely independent of the training dataset" Analysis of the Answer Options:ISTQB CT-AI Syllabus References:
19. Frage
An image classification system is being trained for classifying faces of humans. The distribution of the data is
70% ethnicity A and 30% for ethnicities B, C and D. Based ONLY on the above information, which of the following options BEST describes the situation of this image classification system?
SELECT ONE OPTION
Antwort: B
Begründung:
* A. This is an example of expert system bias.
* Expert system bias refers to bias introduced by the rules or logic defined by experts in the system, not by the data distribution.
* B. This is an example of sample bias.
* Sample bias occurs when the training data is not representative of the overall population that the model will encounter in practice. In this case, the over-representation of ethnicity A (70%) compared to B, C, and D (30%) creates a sample bias, as the model may become biased towards better performance on ethnicity A.
* C. This is an example of hyperparameter bias.
* Hyperparameter bias relates to the settings and configurations used during the training process, not the data distribution itself.
* D. This is an example of algorithmic bias.
* Algorithmic bias refers to biases introduced by the algorithmic processes and decision-making rules, not directly by the distribution of training data.
Based on the provided information, optionB(sample bias) best describes the situation because the training data is skewed towards ethnicity A, potentially leading to biased model performance.
20. Frage
Which ONE of the following statements correctly describes the importance of flexibility for Al systems?
SELECT ONE OPTION
Antwort: B
Begründung:
Flexibility in AI systems is crucial for various reasons, particularly because it allows for easier modification and adaptation of the system as a whole.
* AI systems are inherently flexible (A): This statement is not correct. While some AI systems may be designed to be flexible, they are not inherently flexible by nature. Flexibility depends on the system's design and implementation.
* AI systems require changing operational environments; therefore, flexibility is required (B):
While it's true that AI systems may need to operate in changing environments, this statement does not directly address the importance of flexibility for the modification of the system.
* Flexible AI systems allow for easier modification of the system as a whole (C): This statement correctly describes the importance of flexibility. Being able to modify AI systems easily is critical for their maintenance, adaptation to new requirements, and improvement.
* Self-learning systems are expected to deal with new situations without explicitly having to program for it (D): This statement relates to the adaptability of self-learning systems rather than their overall flexibility for modification.
Hence, the correct answer isC. Flexible AI systems allow for easier modification of the system as a whole.
References:
* ISTQB CT-AI Syllabus Section 2.1 on Flexibility and Adaptability discusses the importance of flexibility in AI systems and how it enables easier modification and adaptability to new situations.
* Sample Exam Questions document, Question #30 highlights the importance of flexibility in AI systems.
21. Frage
......
Die hervoragende Qualität von ISTQB CT-AI garantiert den guten Ruf der ZertFragen. Dank erlässliches Kundendienstes behalten wir viele Stammkunden. Viele davon haben ISTQB CT-AI Prüfungssoftware benutzt. Diese gut gekaufte Software is eine unserer ausgezeichneten Produkte. ISTQB CT-AI Prüfung ist heutezutage sehr populär, weil das Zertifikat eine bedeutende Rolle in Ihrem Berufsleben im IT-Bereich spielt. Jetzt können Sie auf unserer offiziellen Webseite die neuesten Informationen über ISTQB CT-AI erfahren!
CT-AI Schulungsunterlagen: https://www.zertfragen.com/CT-AI_prufung.html
P.S. Kostenlose und neue CT-AI Prüfungsfragen sind auf Google Drive freigegeben von ZertFragen verfügbar: https://drive.google.com/open?id=1uYYnPNlED9HyEynSs8B7QCMVgbda6QGa
Halo, silahkan pilih kontak support kami di WhatsApp